close
標題:
數學題--極限
發問:
若 lim [3^n/(n+2)!]=? n-->oo 請詳細解釋。
最佳解答:
此文章來自奇摩知識+如有不便請留言告知
lim [3^n/(n+2)!]=? n-->oo 設a(n)=3^n/(n+2)! a(n+1)=3^(n_1)/(n+3)! So a(n+1)/a(n) =[3^(n+1)/(n+3)!]/[3^n/(n+2)!] =3^(n+1)/(n+3)!*(n+2)!/3^n =3/(n+3) since lim 3/(n+3)=0 n-->oo so lim [3^n/(n+2)!]=0 n-->oo
其他解答:
lim [3^n/(n+2)!] n-->oo =lim [(3/n+2)(3/n+1)(3/n)....(3/4)(3/3)(1/2)(1/1) n-->oo =0 SINCE =(3/n+2)(3/n+1)(3/n)...-->0 AS N-->oo AND ..(3/4)(3/3)(1/2)(1/1) IS CONSTANT
文章標籤
全站熱搜
留言列表