close

標題:

Factorisation

發問:

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

Q1.a^3-64 Q2.64a^4-27a 更新: factorise the following expressions: 1. x^2(y+z)+y^2(z+x)+z^2(x+y)+2xyz 2. (x+y+z)(yz+zx+xy)-xyz 3. a^2b-a^2c-ac^2-ab^2-b^2c+bc^2+2abc 4. x^2-y^2+2zx+2yz+2y-2z-1(arrange in powers of x) 5. (xy-1)(x-1)(y+1)-xy arrange in powers of a and b 6. a^2+2ab+b^2-x^2-6x-9 7. ab+2ac+3b^2+6bc-5a-13+4c-10

最佳解答:

1) a^3-64 =(a)^3-(4)^3 =(a-4)(a^2+(a)(4)+(4)^2) =(a-4)(a^2+4a+16) 2) 64a^4-27a =a(64a^3-27) =a[(4a)^3-(3)^3] =a(4a-3)[(4a)^2-(4a)(3)+(3)^2] =a(4a-3)(16a^2-12a+9)

其他解答:

Q1.a^3-64 =a^3-4^3 =(a-3) (a^2+3a+3^2) =(a-3) (a^2+3a+9) Q2.64a^4-27a =a (64a^3-27) =a [ (4a)^3-3^3] =a (4a-3) [ (4a)^2+(4a)(3)+3^2] =a (4a-3) (16a^2+12a+9) Use the identities like: x^3-y^3 =(x-y) (x^2+xy+y^2) Remember to remove the common factor. Hope I can help you!|||||a^3-64 (a-4)(a^2+4a+16) .64a^4-27a a(64a^3-27) a(4a-3)(16a^2+12a+9)

arrow
arrow
    創作者介紹
    創作者 jjb973v 的頭像
    jjb973v

    飛航百科

    jjb973v 發表在 痞客邦 留言(0) 人氣()